
Autonomous Mapping, Localization and Navigation
using Computer Vision

Siddharth Saha
Halıcıoğlu Data Science Institute

University of California, San Diego
La Jolla, CA, 92093
sisaha@ucsd.edu

Jay Chong
Halıcıoğlu Data Science Institute

University of California, San Diego
La Jolla, CA, 92093
jac269@ucsd.edu

Youngseo Do
Halıcıoğlu Data Science Institute

University of California, San Diego
La Jolla, CA, 92093
y1do@ucsd.edu

Abstract

The focus of this paper is on the application of computer vision in mapping, local-
ization and navigation of an autonomous vehicle. Primarily we are dealing with
the problems of

• How to map and localize in an environment where 2D Lidars are not useable
• How to use computer vision to enable navigation in varying light conditions
• How to avoid obstacles and stay within lanes using computer vision

We aim to achieve this using the following methods
• Use of the RTABMAP[1] package which uses Camera, Lidar and Odometry

to map and localize. It uses the depth information from the camera as well
which allows a 3D Lidar view in at least one direction

• Use of the rqt reconfigure dynamic GUI to tune camera parameters to reduce
sensitivity to light

• Use of Facebook AI Research’s Detectron2 Deep Learning network[2] to
segment images and detect objects based off captions

1



1 Introduction

One of the main tools used in autonomous mapping and navigation is a 3D Lidar. A 3D Lidar pro-
vides various advantages. It is not sensitive to light conditions, it can detect color through reflective
channels, it has a complete 360 degree view of the environment and does not require any ”learning”
to detect obstacles. One can use the reflective channel to detect the color of lanes as well as a regular
2D axis view to avoid obstacles. The pointcloud information from the Lidar can also easily enable
mapping and localization as the vehicle will know where it is at all points. It is easy to see why so
many large scale autonomous vehicle units invest in expensive and bulky Lidars. However, this is
not accessible to all due to it’s price. A camera (even depth) is much more affordable. However it
comes with it’s own slew of disadvantages. It can see color but programming for the color is hard
due to varying light conditions. Unless you use multiple cameras you often can’t see all around you.
These factors together are a hindrance to autonomous mapping and navigation and we thus aim to
resolve it through this paper

2 Environment

To carry out experiments we choose to use our field track at UCSD. It provides an environment
where the 2D Lidar sometimes comes in use (through cones) but still cannot completely depend on
the Lidar to navigate safely. There are white lane markings and central yellow lanes that can be used
as a guide. We can also spread cones around to use as obstacles. During the daytime the sunlight
appears heavily on end while being darker on the other side which creates issues in doing even 1 lap
safely in the track. In the night the light conditions are much more stable. But as seen in the image
below there are still areas where the light is strong and other areas where the light is much weaker

Figure 1: Environment for testing

3 Experiment Design

To meet the 3 targets described in the abstract we have set up 3 different experiments:

2



3.1 Mapping

In SLAM, we are driving the car around to construct a map of the environment while simultaneously
localizing itself relative to the map[3]. For this experiment, we will be generating our own data. This
will be done by controlling a car and have it drive around the track while the car maps and localizes
itself. Previously, we ran this experiment in a simulated environment and it generated 3 different
datasets, the ground truth, the odometry path, and the SLAM path. However, in the real world,
we don’t have a ground truth. So, we will be driving the car on the yellow line of the track as a
substitution. Driving it on the track’s yellow line will improve testing stability and give us more
consistent results. The goal here is to increase the number of greens we see in figure B. Getting a
green means that the algorithm has successfully found a loop closure and localized itself. Getting a
yellow means that the loop closure has been rejected, but the data is still saved for further analysis
and processing. An example can be seen below

Figure 2: Green and Yellow hypothesis on the track

Driving speed is crucial when running the RTABMAP algorithm. When the car goes too fast or
makes sudden movements, the car will fail to localize itself or detect any loop closures. In figure A,
there is red ghosting at the bottom square and this is caused by a sudden movement while turning.
In order to fix this issue, we had to drive over the same area. Furthermore, an environment in which
the vehicle can return to a previously visited spot is beneficial because this allows the car to map and
locate new images to older ones. When we mapped in an indoor environment without any set path,
the mapping found very little loop closures. However, when mapping on the track, where we were
able to drive the car in a consistent path, the car is able to find a significant number of loop closures.

3.2 Light Conditions

The problem we want to address is: how do we figure out a way for the car to navigate robustly
using computer vision under varying light conditions? When driving the car in the tent, we initially
noticed that the car had some challenges in navigating under sunlight conditions, and realized that
Intel Realsense D455 camera configuration tuning is necessary in order to alleviate the sensitivity
of the camera to such bright conditions. Specifically, we want to test different camera parameters
(brightness, depth gain, contrast, auto exposure, hue, white balance etc.) dynamically to see which

3



configuration setting could best set off the camera’s sensitivity to bright conditions and give us a
similar image layout to the normal, default setting (non-bright conditions).

Our initial idea was to find a way to incorporate Intel Realsense software development kit (SDK)
directly to ROS so that we can use the SDK sliders to adjust camera configuration settings. However,
this was quite hard to implement and debug within our workspace. As a more realistic approach,
we integrated Realsense camera settings to a rqt plugin called ‘rqt reconfigure’ so that we can easily
view and edit parameters that are accessible with the dynamic reconfigure package. With this pack-
age, we are able to use its command line tools to produce a variety of .yaml files that will be read
in the launch file to make the data collection process easier and reproducible. After executing the
launch file, we can simultaneously use this rqt plugin tool and refer to Intel’s tuning guidance[4] to
address our question. Specific steps to our experiment are as follows.

• Use dynamic reconfigure package to tune parameters
• Take several images of the same area with different lighting conditions
• Once data under different configuration settings is collected with the recording procedure,

compare between same images at the same position using the evaluation metric SSIM
• Repeat the process and choose configuration with the best SSIM

Figure 3: rqt reconfigure GUI

3.3 Object Segmentation

The experiment design here is relatively simple compared to the previous two.

3.3.1 Data Collection

We run some laps in our track and collect image data. This poses a slight issue in that the images are
collected at 60FPS(frames per second). Meaning we have 60 images of nearly the same moment. In
the Light Conditions section this didn’t pose a problem since we would just record the first image
and stop. To combat this issue we diverted the images into to a new ROS topic that published the
images at a throttled down 1FPS. This allowed for a lot more distinct images to be collected that
made the data collection and storage process a lot more efficient

3.3.2 Data Preparation

This image data is then labelled with the help of the MakeSense AI tool[5]. This tool enables annota-
tions in various formats in a precise manner. We used the COCO JSON format to get segmentations
and boundary boxes. The images are then manually split into a train, validation and test data.

4



3.3.3 Training

We built a repository that is able to take this data and provide us back metrics on how the Detectron2
model performed. This repository allows for several model files to be provided so that we can run
several experiments at once without constantly monitoring. This enables us to get results back much
more efficiently as well. We can run experiments using different base models(Mask RCNN, Faster
RCNN etc), different learning rates, different epochs and different batch sizes. The model which
performs best on the validation dataset is returned. This model is then used to evaluate the test data
as well as return a sample video of all the predictions on the test. Normally a video on test data
would not make sense since each test image would not be sequential. However, in our case, since
the image data for train, validation and test are collected sequentially in laps they tie together as
well. By providing a custom framerate we are able to control the output of the video as well for
legible outputs

4 Dataset

Each of the 3 experiments provide their own dataset which is used in different ways:

4.1 Mapping

Our experiment generated a .db file which consisted of positional data and image data. Positional
data comes in 2 files and each file has the following format:

Column Name Meaning
timestamp Time stamp at which the position was recorded

tx Translational X component position
ty Translational Y component position
tz Translational Z component position
rx Imaginary X component of Quaternion or pitch
ry Imaginary Y component of Quaternion or roll
rz Imaginary Z component of Quaternion or angle of wheels
rw Real W component of Quaternion or yaw

Both datasets will have the same timestamp for each data entry. This means for any given timestamp,
we have 2 points of information on the location of the robot.

Since both datasets are already aligned, we don’t have to do any preprocessing of the data. We will
do a basic sanity test on the data by plotting the positions of each dataset and seeing if the plotted
trajectory of the datasets are similar. An example is shown below:

Figure 4: Plotted trajectory of datasets

5



Using RTABMAP’s built-in database, we are able to view image data that was recorded during the
mapping and localization process. Below are two images from our dataset.

Figure 5: Incorrect mapping b/w 2 images

Figure 6: Correct mapping b/w 2 images

In each image data, there are 2 key elements that RTABMAP labels, the first is a yellow dot, which
represents a unique key point in that particular image, the second is a blue line, which represents
when RTABMAP is able to match key points between two images. There are two images in every
index of image data, one from an initial mapping and another which is used to compare it with the
old image. In figure 5, we see that since they are different frames, there are no blue lines. However,
in figure 6, it was able to match a majority of the yellow points. With this, a loop closure is detected
at the given image data.

4.2 Light Conditions

Our experiment will record and generate a collection of .bag files, with one image to be exported
from each .bag file. Since we have previously witnessed that the car navigates robustly under con-
ditions with less sunlight, we will mainly use the image data under default settings (non-bright) as
a standard baseline to be compared with images with other configuration settings under brighter
conditions.

6



4.3 Object Segmentation

The dataset will be a set of images. Primarily a ROS bag file containing images from the throttled
down topic we made. We extract the images from the bag file, label and split into train, validation
and test data. Each of the 3 contains the following information

• A COCO JSON dictionary containing the annotations for each image
• A set of images (whose file names are included in the JSON dictionary above)

The COCO JSON dictionary (after being read into Detectron2) is formatted as follows

• Images: Contains a list of dictionaries. Each dictionary contains information on a specific
image. We have details like the Image ID(used to link with annotations and segmentations
later), File Name, Width and Height for each image

• Annotations: Contains a list of dictionaries. Each dictionary contains information on a
specific annotation instance. We have details like the annotation ID, image ID, category
ID, iscrowd (refers to whether we are annotating a single object or a bunch of objects
together. For the purposes of this research paper all our objects are annotated separately
so iscrowd is 0), and segmentation (a list of x,y vertices since our labelling is in polygon
format)

• Categories: Contains a list of dictionaries. Each dictionary contains information on the
categories our dataset is labelled for. We have details like the category name and category
ID. For the purposes of this experiment we have categories lane and cone. The category ID
is used to reference these category names

A sample image can be viewed below

7



Figure 7: Raw training image

The image is a 360 x 1280 image taken from the Research environment mentioned earlier. As
mentioned we can see the white lane and orange cone in the image.

The boundary boxes are generated from a max computation using the list of vertices in segmentation
(basically most extreme at each end). With this we have a clear idea of where the objects are on the
map and can compute the position we should move towards to avoid the objects detected (thus
staying within the lane and avoiding the cones)

5 Evaluation

Each of the 3 experiments have their dataset evaluated in different ways:

5.1 Mapping

We will be using the Absolute Trajectory Error (ATE) as our main metric to accurately evaluate our
SLAM algorithm. Below is a visual representation of how the ATE is calculated[6]

Figure 8: Baseline ATE

The path is created through driving around the track multiple times. The blue lines represent what
the algorithm thinks the path is, the black lines represent the ground truth, and the red lines represent
the distance between the black and blue lines

8



5.1.1 Integration

Figure 9: Transform Tree

Prior to running the RTABMAP algorithm in the real world, we needed to make sure all of our
sensors were working. This includes the lidar, vesc, and RGB-D camera. After making sure that
all sensors are working, we created a launch file that sends sensor data to RTABMAP for process-
ing. The launch file included dummy nodes so that the correct transformation tree can be created.
RTABMAP requires that all sensors are under the same transformation tree for any data to be pro-
cessed.

5.2 Light Conditions

The metric we will be using to evaluate the sensitivity of different camera configurations to lights
is Structural Similarity Index (SSIM) and Mean Squared Error (MSE). First, MSE is a fundamental
metric that calculates the difference in surface, or pixels of two compared images. SSIM is used as
a metric to measure the similarity between two images at the same position. Structural Similarity
Index between two images is calculated as a value between -1 and +1[7]. A value of +1 indicates
that the 2 images are very similar, while a value of -1 indicates that they are very different[7]. In
our case, we will compute the SSIM between the image under default configuration setting and
image under adjusted configuration settings with brighter conditions (study lamp or phone lights
over camera). The higher the SSIM between the image under default setting and tuned camera
configuration setting, the lower the sensitivity of the camera is.

5.2.1 Why we specifically chose SSIM:

Structural Similarity Index (SSIM) is fit to reflect the human visual perception system, which iden-
tifies the differences between the information extracted from two images[8]. SSIM adopts the as-
sumption that the human visual perception system (HVS) is highly adapted for extracting structural
information, and considers image degradations as perceived changes in structural information varia-
tion. Relating this to our case, we can best identify the structural information that changed between
the image under default (non-bright conditions) setting and tuned setting under bright conditions
(lamp, phone light). This quality assessment is a more enhanced form of measurement as compared

9



to metrics like mean squared error, which computes error between two images by simply quantify-
ing the difference in the values of each of the corresponding pixels of images. So what makes SSIM
better in quality than other metrics? SSIM extracts 3 key features from an image: 1) luminance 2)
contrast 3) structure[8].

Figure 10: SSIM illustration

Luminance(x, y) = l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1

Contrast(x, y) = c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2

Structure(x, y) = s(x, y) =
σxy + C3

σxσy + C3

Two images are represented as x and y, with µ and σ representing the mean and standard deviation of
the given images. C1, C2, and C3 are constants to ensure stability in case the denominator becomes
zero. SSIM score is given as the multiplication of these components with the relative importance of
each metric: α, βandγ

SSIM(x, y) = [l(x, y)]α · [c(x, y)]β · [s(x, y)]γ

5.3 Object Segmentation

To evaluate the model we choose to use the Average Precision[9] which is the official metric used in
the Microsoft COCO paper as well as the main metric returned by the Detectron2 network. Unlike
SSIM and ATE mentioned earlier, Average Precision is a much more simpler metric that is used
in several classification problems. Let’s first start with Precision and Recall. The formulas are as
follows

Precision =
Number of True Positives

Number of True Positives + Number of False Positives

Recall =
Number of True Positives

Number of True Positives + Number of False Negatives

These are simple metrics used in class imbalance problems as it is more revealing than accuracy.
Precision is basically a measure of how much we can trust the model when it says positive (in this
case positive is it classified an object in our image). Recall on the other hand is a measure of how
good our model is at predicting positives overall. These 2 together share an inverse relationship. If
you have a really high precision your recall tends to fall down. On the other hand a high recall means
your precision will fall down. These 2 together form a curve known as the precision recall curve
which is decreasing in nature. The area under this curve is what we call ”Average Precision”. This is
taken a step further in most research papers such as AP50, AP75 and mAP. In our own paper we use

10



mAP. The numbers here (50 and 75) are the thresholds at which we determine what is a true positive
and what is a false positive. When our model classifies an object it comes with a confidence level.
In the case of AP50, anything with a confidence of 50% is considered positive and below negative.
This is then compared to the actual labels to see if it is falsely classified or not. AP75 follows a
similar principle. mAP is the mean of the average precision curve at all levels of confidence. In the
COCO paper this is 10 splits from 5% to 95%. It also averages the precision across all categories.
This is the most common metric used in papers and is what we will be using to serve as a baseline
comparison for future research

Each model will be evaluated on the above metrics in a certain priority order (inputted into our
repository pipeline). Whichever model performs best is used for final inference and video genera-
tion. Once it passes this stage we will shift the model weights to our physical car. This is the final
test phase. If our car is able to navigate safely on our track with the help of the model then it means
it was successful and we were able to achieve autonomous navigation and obstacle avoidance using
the camera

6 Results

Each of the 3 experiments resulted in different things

6.1 Mapping

Figure 11: 2D and 3D maps

11



These are the 2D and 3D visualizations of the maps created of our track. In the 2D image, the black
areas represent objects, light gray areas represent areas where the car has seen and dark gray areas
represent areas where the car has not seen.

6.2 Light Conditions

6.2.1 Baseline

The baseline SSIM and MSE we want to improve from are 0.5922 and 19243, where we have
compared images under non-bright and bright conditions, both using default camera settings.

Figure 12: Baseline image comparison

6.2.2 Tuned

Configuration File SSIM MSE
Param1 0.7248 7231
Param2 0.6173 7981
Param3 0.6832 8435
Param4 0.6369 9066
Param5 0.4652 12903
Param6 0.3387 18349
Param7 0.7856 893
Param8 0.7456 746
Param9 0.8598 1823

Param10 0.7531 2598
Param11 0.8322 1398
Param12 0.5894 18094
Param13 0.9245 49
Param14 0.6419 3459
Param15 0.4255 16772
Param16 0.6047 17388
Param17 0.3249 19834
Param18 0.6757 5663
Param19 0.6821 6285

On seeing the top 5 configurations

12



Figure 13: Top Configurations SSIM and MSE

Overall, lower levels of parameters were helpful in alleviating light intensity. Luminance, contrast
and structure were appropriately balanced out while exposing the details of the image, which led
to a noticeable rise in SSIM and reduction of pixel difference (MSE) to under 1000. The five
configurations were successful in compensating for the loss of content caused by light, especially
on the front left side of the tent that surrounds our track. The best tuned configuration we found
through setting at 3500 (compared to the initial value at 4600), and we got SSIM to reach 0.9245
and MSE down to 49.

The following were the results of the best tuned configuration

13



Figure 14: Best Configurations Image Comparison

On the other hand, the bottom 5 configurations

Figure 15: Bottom Configurations SSIM and MSE

Generally higher levels of parameters displayed minor improvements or made things worse, since
the altered images deviated even more from the image with default configurations (under non-bright
conditions).

14



6.2.3 Analysis

The top 5 parameters that were useful were: lower white balance, lower contrast, lower sharpness,
lower contrast and lower saturation. Other minor parameter adjustments were used alongside each
of these parameters, but these were the features that brought about dominant alterations to the non-
tuned image under daylight conditions.

Lower white balance improved the results by compensating for the “color cast” imposed by the light
(ground looking light-greenish to slight yellow)[10]. Moderate to low sharpness increased content
and detail of the image while preventing bad artifacts in the image. Lower contrast minimized the
difference in pixel (MSE) by offsetting the image’s liveliness induced by light sensitivity of the
camera. In terms of saturation, the difference in the levels of dominant color hues such as green
(ground) and blue (middle, dotted lines) and remaining hues decreased with low saturation levels,
once that led to shutting off dominant, colored hues that were being emphasized and intensified due
to light.

Notable parameters that were not useful were: lower/higher hue, high gain, high exposure and high
brightness.

Both lower and higher levels of hue parameter merely led to changes in color, unlike how the contrast
parameter reduced color gradients to set off liveliness of the image. Increasing gain introduced
electronic noise and degradation in depth quality (checked through Realsense Depth camera node),
which also made it difficult for the tuned image to become similar in layout to the default image [4].

6.2.4 Realtime Performance Evaluation

Now that we have found the best tuned configuration that maximizes SSIM and minimizes MSE,
how do we actually determine if this configuration is useful in terms of dynamic movement? The
tuning of Intel D455 camera nodes was done with single, static images since that was the effective
way to solely compare between the effects of parameter adjustments themselves. However, we also
believed that it was important to integrate the viability of our tuned configuration to the car’s entire
runtime, which in our case is one lap around the track.

The dataset we use is the same, as we have already exported images from .bag collections using
the image view ROS package. Instead of selecting a single image to compare with another single
image, we take the whole set of images recorded in one lap.

We evaluate the consistency of our best-tuned configuration’s ability to offset light in realtime by
observing the variability of pure luminescence across the set of images. If this configuration is able
to offset light at one area of the track but does so in a relatively weaker amount in another area of the
track, that demonstrates the variability of pure luminescence. The ultimate goal is to test whether or
not the similarity level between realtime performance of default configuration images (non-bright
conditions) and tuned configuration images (bright conditions) is high.

We measure that by taking RGB color code information using Python’s ImageStat library, in order
to compute the perceived brightness of all images in the set. We then simply calculate the standard
deviation (measures variability) of this numeric figure to get the realtime performance. The returned
values are shown below:

15



Figure 16: Runtime/realtime performance in light sensitivity

As expected, the image dataset with non-tuned configuration (under bright conditions) displayed the
highest value, since images were exposed to different levels of light at different areas of the track. We
found that the realtime performance between default configuration and tuned configuration is highly
similar at 86%, compared to the initial realtime performance between default configuration (non-
bright conditions) and non-tuned configuration (bright conditions) being 69% similar. This showed
that we are 86% confident in deploying our best-tuned configuration in maintaining a consistent
amount of light that it would offset across the given realtime.

Although our best-tuned configuration demonstrated a noticeable improvement in realtime perfor-
mance across the car’s runtime, the camera was still sensitive to light in certain areas of the track
when the car drove autonomously in bright daylight conditions. This shows that there is still work
that needs to be done to actually allow our camera or car to be more robust to lighting conditions

6.3 Object Segmentation

After experimenting with the hyper parameters we got

Epochs Batch Size Learning Rate Train mAP Validation mAP
100 64 0.02 83.7 81.3
100 16 0.02 84.9 81.8
100 8 0.02 86.3 83.9
200 8 0.02 90.6 79.9
200 8 0.01 89.9 87.4

Our baseline model was that of 100 epochs, batch size of 64 and a learning rate of .02 which was
quickly dropped down due to a scheduler. Since our dataset was quite small we decided to drop
down the batch size for more stochastic weight updates. This worked and we found 8 to be the
optimal batch size. We next aimed to target epochs. However increasing the 200 epochs quickly led
to overfitting on the data. We reduced the learning rate to compensate and the performance stabilized
near 90%

This was a surprisingly good performance and when tested on track it provided near perfect infer-
ences for the lane and cone objects

16



Using the Detectron2 Framework we can draw the segmentation and even a boundary box around
each object in the image

Figure 17: MaskRCNN Labelled image

However the model itself runs extremely slowly at around 5FPS since the inference takes 200 mil-
liseconds. This required us to drive really slowly to adjust to the latency in predictions

6.3.1 Usage

The inference results were used to generate a white polygon. The white polygon was basically the
area between the lanes and symbolized the areas we are allowed to drive in. The boundary box
vertices of the lanes were used in this calculation since they precisely mapped the endpoints of the
lane segmentation. The segmentation information from the cones was then overlayed. In cases of
overlap between the cones and the white polygon we generated earlier we blacken out that section
of the image. This means we are not allowed to go there

Figure 18: Processed driving image

The centroid of the image is then taken to choose a point to navigate towards in the white region.
This point is converted into a throttle and a steering angle which is sent into our VESC to drive
towards

Here is a flowchart of how this process looks

17



Figure 19: Driving ROS Flowchart

Here the /camera/color/image raw and /masks are ROS topics that are used to communicate b/w the
several nodes. We run the Detectron2 MaskRCNN wrapper separately to prevent re-initalizing of
the model constantly

7 Conclusion

Overall we had some successed and some failures in our entire setup. The car was able to localize
well but required a lot of laps to map effectively. Our car is able to drive safely in the track but it
requires extremely slow speeds due to the MaskRCNN model having high enough inference times
to not be usable in real world. The camera tuning was able to reduce the effect of light but not to the
extent that it was reliable to deploy in the real world. Future improvements would be

• Use of additional sensory information and better parameters during mapping
• Use of cheaper models and offloading model inference to another chip (Like the OpenCV

AI Kit Depth camera)
• Use of domain randomization to reduce the effect of lights

8 Team Contributions

Siddharth Saha: Wrote sections Abstract, Introduction, Environment and Conclusion. Wrote up
section Object Segmentation under Experiment Design, Dataset, Evaluation and Result. Conducted
research, designed and distributed research targets among team, Wrote object segmentation coding
repository to generate and test models for inference in car. Wrote RTABMAP tuning repository to
test several configurations at scale. Developed Dockerized container to run said repositories. Cre-
ated navigation module based off Detectron2 results in ROS. Provided data collection instructions
for collecting data for Object Segmentation, integrated and edited writeups to NIPS style report
and assisted Jay and Youngseo in debugging problems in their topics. Working on OpenCV AI Kit
Depth Camera and how to incorporate depth assisted segmentations at scale using their neural chips

Jay Chong: Data Collection for all 3 experiments. Lidar debugging, Camera debugging and
VESC debugging of car. Integration of Mapping and Localization from last quarter to car. De-
bugging Transforms issue. Running tests with said mapping in real world track. Helped Youngseo
debug and setup his testing environment, Wrote up section Mapping under Experiment Design,
Dataset and Evaluation and Result. Set up remote connection to allow team members to work on
car. Collaborated with Siddharth on using OpenCV AI Kit with Depth camera and set up camera on
mount in real car

Youngseo Do: Researched and designed a pipeline of testing Intel Realsense camera config-
uration settings. Researched and came up with an evaluation metric to judge the sensitivity of
different camera configurations against light and self-implemented an evaluation method for run-
time performance of best-tuned configuration. Modified the launch file to handle multiple camera

18



configuration settings, Coordinated with Jay in collection of .bag files and results from exported
data. Wrote the light tuning portions of the report (Experiment Design, Dataset, Evaluation,
Results), website and presentation. Created the whole structure of code artifact (ETL, EDA,
comparison, evaluate) for camera tuning

References

[1] M. Labbé and F. Michaud. Rtab-map as an open-source lidar and visual slam library for large-
scale and long-term online operation. https://introlab.3it.usherbrooke.ca/
mediawiki-introlab/images/7/7a/Labbe18JFR_preprint.pdf, 2019. in
Journal of Field Robotics, vol. 36, no. 2, pp. 416–446, (Wiley).

[2] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detectron2.
https://github.com/facebookresearch/detectron2.

[3] Sagarnil Das. Simultaneous localization and mapping (slam) using rtab-map. https://
arxiv.org/pdf/1809.02989.pdf, 2018.

[4] John Woodfill Anders Grunnet-Jepsen, John N. Sweetser. Best-known-methods for tuning
intel® realsense™ d400 depth cameras for best performance. https://www.intel.
com/content/dam/support/us/en/documents/emerging-technologies/
intel-realsense-technology/BKMs_Tuning_RealSense_D4xx_Cam.pdf,
2020.

[5] Piotr Skalski. Make Sense. https://github.com/SkalskiP/make-sense/.
[6] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A benchmark for the evalua-

tion of rgb-d slam systems. In 2012 IEEE/RSJ International Conference on Intelligent Robots
and Systems.

[7] Pranjal Datta. All about structural similarity index (ssim): The-
ory + code in pytorch. https://medium.com/srm-mic/
all-about-structural-similarity-index-ssim-theory-code-in-pytorch-6551b455541e,
2020.

[8] H.R. Sheikh E.P. Simoncelli Zhou Wang, A.C. Bovik. Image quality assessment: From
error visibility to structural similarity. https://www.cns.nyu.edu/pub/eero/
wang03-reprint.pdf, 2004.

[9] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays,
Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft coco: Com-
mon objects in context. https://arxiv.org/pdf/1405.0312.pdf.

[10] Chiou-Shann Fuh Po-Min Wang. Automatic white balance with color tempera-
ture estimation. https://www.researchgate.net/publication/224693906_
Automatic_White_Balance_with_Color_Temperature_Estimation, 2007.

19

https://introlab.3it.usherbrooke.ca/mediawiki-introlab/images/7/7a/Labbe18JFR_preprint.pdf
https://introlab.3it.usherbrooke.ca/mediawiki-introlab/images/7/7a/Labbe18JFR_preprint.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21831
https://github.com/facebookresearch/detectron2
https://arxiv.org/pdf/1809.02989.pdf
https://arxiv.org/pdf/1809.02989.pdf
https://www.intel.com/content/dam/support/us/en/documents/emerging-technologies/intel-realsense-technology/BKMs_Tuning_RealSense_D4xx_Cam.pdf
https://www.intel.com/content/dam/support/us/en/documents/emerging-technologies/intel-realsense-technology/BKMs_Tuning_RealSense_D4xx_Cam.pdf
https://www.intel.com/content/dam/support/us/en/documents/emerging-technologies/intel-realsense-technology/BKMs_Tuning_RealSense_D4xx_Cam.pdf
https://github.com/SkalskiP/make-sense/
https://medium.com/srm-mic/all-about-structural-similarity-index-ssim-theory-code-in-pytorch-6551b455541e
https://medium.com/srm-mic/all-about-structural-similarity-index-ssim-theory-code-in-pytorch-6551b455541e
https://www.cns.nyu.edu/pub/eero/wang03-reprint.pdf
https://www.cns.nyu.edu/pub/eero/wang03-reprint.pdf
https://arxiv.org/pdf/1405.0312.pdf
https://www.researchgate.net/publication/224693906_Automatic_White_Balance_with_Color_Temperature_Estimation
https://www.researchgate.net/publication/224693906_Automatic_White_Balance_with_Color_Temperature_Estimation

	Introduction
	Environment
	Experiment Design
	Mapping
	Light Conditions
	Object Segmentation
	Data Collection
	Data Preparation
	Training


	Dataset
	Mapping
	Light Conditions
	Object Segmentation

	Evaluation
	Mapping
	Integration

	Light Conditions
	Why we specifically chose SSIM:

	Object Segmentation

	Results
	Mapping
	Light Conditions
	Baseline
	Tuned
	Analysis
	Realtime Performance Evaluation

	Object Segmentation
	Usage


	Conclusion
	Team Contributions

